Mathematical Programming 40 (1988) 265-287 265
North-Holland

A CHORDAL PRECONDITIONER FOR
LARGE-SCALE OPTIMIZATION

Thomas F. COLEMAN

Computer Science Department & Centre for Applied Mathematics, Cornell University,
Ithaca, NY, 14853, USA

Received 1 July 1986
Revised manuscript received 17 August 1987

We propose an automatic preconditioning scheme for large sparse numerical optimization. The
strategy is based on an examination of the sparsity pattern of the Hessian matrix: using a
graph-theoretic heuristic, a block-diagonal approximation to the Hessian matrix is induced. The
blocks are submatrices of the Hessian matrix; furthermore, each block is chordal. That is, under
a positive definiteness assumption, the Cholesky factorization can be applied to each block without
creating any new nonzeros (fill). Therefore the preconditioner is space efficient. We conduct a
number of numerical experiments to determine the effectiveness of the preconditioner in the
context of a linear conjugate-gradient algorithm for optimization.

Key words: Large-scale optimization, chordal graph, preconditioned conjugate-gradients,
unconstrained minimization, perfect elimination graph, sparse Cholesky factorization.

0. Introduction

In this paper we are concerned with the minimization of a smooth function
f:R"-> R' in the circumstance where n is large and the Hessian matrix H(x) is
sparse. An efficient method for such a problem must exploit sparsity at every turn:
In particular, attention to sparsity must be paid both to the determination of H(x)
(or an approximation) as well as to subsequent comphtations involving H (x)—
especially the solution of linear systems. Theory, algorithms, and software for the
efficient sparse finite-difference approximation to H (x) have recently been developed
(e.g. Powell and Toint, 1979; Coleman and Mor¢, 1983, 1984; Coleman, Garbow
and Moré, 1984, 1985; Coleman and Cai, 1986); we propose no improvements here.
Indeed, the algorithm proposed here can use this previous work in a straightforward
way. The focus of this present work is on the exploitation of sparsity after H has
been determined (perhaps via a sparse finite-difference procedure). We assume
throughout that the sparsity pattern of H is both known and fixed (for all x).

A Newton-like method for minimization involves the repeated solution of linear
systems

H(x)s=-Vf(x) (0.1)

When x is close to a local minimizer x, of f then we can expect H to be positive
definite: In such a case the method of conjugate gradients (CG) is appropriate to
solving (0.1). When x is not close to x, the symmetric matrix H may not be positive

266 T.F. Coleman | A chordal preconditioner

definite. Nevertheless, it is possible to “apply” CG until indefiniteness is dis-
covered—at this point some alternative action must be taken. Steihaug’s (1983)
algorithm is an example: this method generalizes the notion of Powell’s (1970)
“dogleg” step and allows for the use of a conjugate gradient procedure to determine
a suitable step even in the presence of an indefinite Hessian matrix.

It is well known that a CG-based method can generally be improved (i.e. made
more efficient) with the use of a preconditioner (PCG). The purpose of this paper
is to propose and experimentally explore a general algorithm for determining
preconditioning matrices for use in an optimization context.

The basic idea behind the construction of a preconditioning matrix is as follows.
Given H, we find a permutation matrix P so that a block-diagonal of the matrix
PHP", D = diag(D;), is chordal. That is, each diagonal block D, can be symmetrically
permuted so that it incurs no fill under Cholesky factorization (assuming D; to be
positive definite). The proposed algorithm attempts to find chordal blocks D; which
are as ““heavy” as possible. The no-fill property allows for the implementation of
the preconditioned conjugate gradient algorithm in space O(n(H)) where n(-) is
the number of nonzeros. Note that since each diagonal block D; is a submatrix of
H, if H is positive definite then so is D. If D; is indefinite then this fact will be
discovered during the Cholesky factorization of D; D, can then be replaced with
a diagonal matrix with positive elements. Alternatively, since indefiniteness of D;
implies indefiniteness of H, it is also possible to construct a direction of negative
curvature using the partially formed factor (Section 2).

The use of chordal preconditoning matrices is not new: banded matrices are
chordal and they have been a popular choice for such a role. However, sparse
optimization problems cannot be expected to possess banded Hessian matrices in
general. Many other suggestions have been made regarding (non-chordal) precon-
ditioners (e.g. Gustafsson, 1980; Manteuffel, 1980; Munksgaard, 1980) but little
work has been done with respect to general preconditioners for optimization. (Thapa
(1984) has conducted a numerical study of some possibilities.)

Dearing, Shier and Warner (1983) have also suggested a heuristic for determining
a chordal matrix C that is ““close” to a given symmetric matrix H. Their heuristic
eliminates off-diagonal nonzeros from H, in a prescribed way, until the resultant
matrix is chordal. This mechanism is entirely different from the procedure described
here. Furthermore, their resultant matrix C is not composed of submatrices of H
(which is the case in our proposal). Hence one cannot conclude that if H is positive
definite then so is C. This complicates the use of C as a preconditioner.

Our paper is organized as follows. Section 1 discusses chordality and introduces
our algorithm for finding heavy chordal submatrices. In Section 2 we present the
results of experiments on symmetric positive definite linear systems. Section 3
discusses the integration of our chordal preconditioner with Steihaug’s trust region
algorithm for sparse nonlinear minimization. Computational results on nonlinear
minimization problems are presented in Section 4. Section 5 provides concluding
remarks.

T.F. Coleman |/ A chordal preconditioner 267

1. Chordal submatrices

Chordal graphs have been much studied (e.g. Golumbic, 1980; Rose, Tarjan and
Leuker, 1976) under various names: perfect elimination, triangulated, rigid circuit,
or monotone graphs. There are several equivalent characterizations. For example,
a graph G = (V, E) is chordal if and only if every cycle of length 4 or more, v,, .. ., v,,
v, has a chord: (v;, v;) € E for some 1<i<j=<t. Or, a graph is chordal if and only
if every minimal x, y separator is completely connected (an x, y separator is a set
of vertices whose removal leaves no path from x to y). However, the most relevant
characterization is this: G is chordal if the vertices V can be ordered, v,, v,, ..., v,
so that if (v;, v;) € E, (v;, v) € E, and i <j<k then (v, v) € E. The importance of
this characterization is that it is now easy to show (e.g. George and Liu, 1981) that
if G is the adjacency graph of a sparse symmetric matrix H, then H suffers no fill
under Cholesky factorization over all feasible assignments of numerical values to
the nonzeros of H. (Element (i, j) is a fill element if H; =0 but L;#0 where L is
the Cholesky factor of H.)

We define a sparse symmetric matrix to be chordal if its corresponding adjacency
graph is chordal.

Chordal matrices can be recognized in time O(n+n(H)), where n(H) is the
number of nonzeros in matrix H. To do this, first order the nodes according to
Maximum Cardinality Search (MCS):

Number the vertices from n to 1. Choose a vertex arbitrarily and label it
n. As the next vertex to number, select a vertex adjacent to the most
numbered vertices.

Then, test for chordality by applying the last chordality characterization mentioned
above: For more information see Rose, Tarjan and Leuker (1976). Golumbic (1980)
also provides an interesting discussion of chordal graphs.

Unfortunately, very few practical problems give rise to sparse chordal matrices.
Nevertheless, a purpose of this paper is to discover if chordal submatrices can often
be found in practice; the chordal submatrix structure can be used to define a
preconditioner which can then be efficiently factored (since no fill is incurred).

1.1. An algorithm for locating a chordal preconditioner

The purpose of this section is to describe a fast algorithm for identifying chordal
submatrices. The algorithm is a greedy one; the driving force behind the algorithm
is Theorem 1.1.1, which we state immediately following a few definitions.

A graph is a clique if it is completely connected. Let G =(V, E) be the graph
under consideration with X < V; (X) = (X, E(X)) denotes the subgraph induced by
X in G. That is, if v, we X then

(v,w)e E(X) & (v,w)eE.
If X<V, yeV,let Nx(y)< V be the adjacency set of y in (X).

268 T.F. Coleman / A chordal preconditioner

Notation. (a) For brevity we write i = k:j for j= k to mean that the index i begins
at i=k and increments by unity until i=j. This is more commonly written as
i=k...,J

(b) In the statement above and the proof below we write (x |_J V;) instead of the
formally correct (x (U V;)).

Theorem 1.1.1. Let V;< V induce a chordal subgraph (V;), i=1:k. Assume that V,
and V; are distinct sets of vertices and there is no edge in E incident to both V; and V,
fori,j=1:k Let xe V=\J V,; further, assume Ny (x)#@ for i=1:k. Then,

k

(Ny.(x)) is a clique fori=1:k = <x U V,-> is chordal.

i=1

Proof. The proof rests on the fact that a chordal graph has no unchorded cycles.
Assume that the induced graph (x| J_, V)) is not chordal. Hence there is an
unchorded cycle. Clearly the cycle must contain x and must otherwise be entirely
included in some set V,. It follows that there are 2 vertices v, w in NVj(x) which
are also on this unchorded cycle. But this violates the assumption that (Ny,(x)) is
a clique. [

Figure 1.1.1 illustrates the construction used in the proof. Vertex sets V,, V, and
V; each induce disjoint chordal subgraphs. Vertex x is not in any of the three sets
and Ny,(x) induces a clique for i =1:3. These 3 neighbour sets are identified by
the rectangles in Fig. 1.1.1. Hence the induced graph, (x |_;_, V}), is chordal.

Theorem 1.1.1 exposes the central idea in our algorithm to find a large chordal
submatrix C. Suppose the nodes of the adjacency graph have been ordered
U1, U, ..., U,. At the beginning of step p, the first p —1 nodes have been considered
for inclusion in V; V. can be partitioned into disjoint sets V,,..., V, such that
(V;) is chordal for i=1:k. Furthermore, there is no edge in E from V, to V, for
i,j=1:k Step p then considers including v, in V: Let I<={1,2,..., k} identify
sets V; such that Ny (v,) #@. Then, if each such set induces a clique, v, is added
to V. and the sets identified by I are merged together (with v,).

Vs

D (5

Figure 1.1.1.

T.F. Coleman / A chordal preconditioner 269

Algorithm Find_Chordal (G=(V, E), V)
- Order nodes v,,..., v,
- Ve=0,k=0
- Forp=1:n
- I(v,)={i: Ny(v,) #0,i=1:k}
- If {{Ny,(v,))=clique Vie I(v,)} then
« Vo= Ve u{n,}
- union V; for i€ I(v,) and v,, adjust k.

Notice that algorithm Find_Chordal affords an efficient implementation since it
is merely a particular expression of the well-known union-find problem (e.g. Aho,
Hopcroft and Ullman, 1974).

In order to find a symmetric permutation that induces a chordal block diagonal,
one merely applies Find_Chordal repeatedly:

Algorithm Find_P

Repeat until V=¢
Find_Chordal(G=(V, E), V)
G=(V-V,, E=E(V-V.)).

We have not yet specified the vertex ordering scheme. It is reasonable to put as
much “weight” in the chordal diagonal blocks as possible. Hence we have imple-
mented a dynamic ordering scheme in which the next vertex to be considered is
that which is most connected to the partially formed chordal block under construc-
tion. Specifically, if C is the partially formed chordal block under construction and
Vc the vertex set, then for each vertex not yet assigned to a chordal block, define
the connectivity weight:

cw(v)= Y |h(w,0)|— T |h(w,)|

we Ve we We

The set Wc is the set of nodes not yet assigned to a chordal block; h(w, v) is the
value of the matrix element. The next vertex chosen is a maximizer of {cw(v): ve
Wel.

E1.1. Some properties of algorithm Find_P

Unfortunately, algorithm Find_P does not necessarily choose C = H when H is
chordal. To see this suppose G(H) is the adjacency graph depicted in Fig. 1.1.2.
An ordering by connectivity weight is v,, vs, v,, v,. Note that G is chordal; however,
the preconditioner produced by Find_P consists of 2 blocks—{v,, vs, v4} and {v,}—
because v, is adjacent to 3 vertices in the same component but they themselves are

Figure 1.1.2.

270 T.F. Coleman | A chordal preconditioner

not pairwise adjacent. Despite this failure, Find_Chordal will recognize certain
classes of chordal graphs. A forest is a graph without cycles; if it is also connected,
it is a tree.

Theorem 1.1.2. Let v,, v,,..., v, be an arbitrary ordering of the nodes of graph
G=(V, E). If G is a forest then Find_Chordal assigns Vo = V.

Proof. Suppose that after k—1 steps Ve ={v,, v,,..., Uk—,}. Divide V¢ into a
maximal number of disjoint vertex sets V;, V,,..., V; such that there is no edge
from V; to V; for i,j=1:1 But there is at most 1 edge from v, to every set V,,
i =1:1; otherwise, by connectivity of each V,, there s a cycle, which s a contradiction.
But clearly then Find_Chordal assigns V¢ = Ve u{n}: hence, Theorem 1.1.2 is
established. [

Notice that Theorem 1.1.2 is applicable under any ordering of the vertices. If the
vertices are ordered according to connectivity weight, then we have the following
theorem concerning band graphs.

Definition. G=(V, E) is a band graph with bandwidth B if there is an ordering
vy, Ua, ..., U, Of the vertices of G such that for i #j,

i-jl<B(G) & (v,v)eE
For example, in Fig. 1.1.3, G, is a band graph with g =1 (corresponding to a
tri-diagonal matrix); G, is a band graph with g =2 (corresponding to a penta-
diagonal matrix).

- eo—eo—eo—0—0—9
G1 =
6 A e e
Figure 1.1.3.

Theorem 1.1.3. Let v,, v, ..., v, be a connectivity weight ordering of the nodes of G.
Let G be a band graph of bandwidth B with the additional property that all edges have

equal weight (all off-diagonal elements inside the band are equal-valued). Then,
algorithm Find_Chordal yields C = G.

Proof. Assume that, after k steps,
Ve = {Uj+1 yeees Uj+k}-

Butif j+1 5 1then cw(j) > cw(i) for i = 1:j— 1. Similarly, if j+ k # n then cw(j + k+
1)>cw(j+k+i) for i=2:n—j—k Without loss of generality, assume the former.

T.F. Coleman |/ A chordal preconditioner 271

But (Ny_(v,)) is a clique and hence Find_Chordal assigns Vc = Ve u{y}. Thus
Theorem 1.1.3 is established by induction. [

1.2. Algorithms for finding t-chordal submatrices

The chordal preconditioner defined above has the useful feature that it can be
factored without using extra space. Hence, an upper bound on the required space
to factor the preconditioner is just the number of nonzeros in the original matrix,
n(H). Moreover, this number is known before computations begin, provided the
structure of H is known. This allows for a static data structure. Nevertheless, it may
be useful to exercise greater control over space. For example, the user may feel that
3n is the most space available for a preconditioner; this is the space required by a
tri-diagonal preconditioner. Fortunately, the algorithms proposed above can be
modified to allow this flexibility.

Algorithm Find_Chordal will find a forest (instead of a general chordal graph)
if the “clique test” is replaced with a “clique of size 17 test. More generally, a
chordal submatrix of order r, with at most 2tr +1 nonzeros, will be found if the
“clique test” is replaced with a ‘““clique of size t” test.

1.3. A bordering scheme

If extra space is available, it is possible to extend a chordal submatrix to a larger
submatrix. This extra “weight” in the preconditioner should decrease the number
of required CG iterations. Of course this gain is partially mitigated by increased
storage requirements and factorization expense. Nevertheless, if some limited extra
space is available, it may well be worthwhile to use it.

To illustrate the idea, consider the following blocked submatrix of H:

o-(5)
V' I B

where C is a chordal matrix, V is arbitrary (but sparse) and B is a small dense
matrix. Since D is a submatrix of H, D is positive definite if H is positive definite.
Itis possible to solve systems with a positive definite blocked matrix without explicitly
forming the factor of the entire matrix (e.g. George and Liu, 1981). In particular,
it is only necessary to factor C and the Schur-complement B — VTC~'V. For example,
an algorithm to solve Dx = b is as follows:

FACTOR:
C=L,LT
Form B=B-V'C™'V
B=L,L]
SOLVE:
Cy=>b'
Bx*=b2—VTy

Cx'=b'-Vx?

272 T.F. Coleman | A chordal preconditioner

where bT=(b', b)), x =(x', x*)". If the block diagonal preconditioner consists of
m blocks D; of this form—each with a dense m; by m; corner submatrix—then the
total space requirements are bounded by the number of nonzeros in H plus

m
Y m?.
i=1

In our implementation, the user can specify in advance the space available for a
preconditioner. The chordal blocks are then bordered (as above) as they are formed
until a space bound is met. The vertices are added to submatrix B; according to
connectivity weight. (If indefiniteness is discovered during the factorization, we
proceed as discussed in Section 3.)

2. Experiments on positive definite linear systems

In this section we numerically consider the preconditioned conjugate gradient
algorithm (PCG), as applied to several sparse symmetric positive definite systems,
using four different preconditioners. Specifically, we use a general chordal structure,
a tree or forest structure, a diagonal matrix, and the identity matrix. We assume the
reader is familiar with the conjugate gradient method for linear systems (e.g. Golub
and Van Loan, 1983). All computations were performed on a VAX 780, in Fortran
77, in double precision.

The sparse matrix structures we have chosen come from the Everstine (1979)
collection of symmetric sparse matrix structures (Naval Problems) and a well-known
set of sparse linear programming problems (obtained from Dr. Michael Saunders,
SOL, Stanford University). The LP collection yields symmetric matrix structures
through the product ATA.

Our first set of experiments are concerned only with relatively small dimensional
matrices from these collections: the extensive number of runs and the monitoring
of condition number demanded a modest value of n. (We conclude this section with
several larger experiments.) The densities of the symmetric test matrices are listed
in Table 1. Density is [n(H)/n™*2] * 100.

Table 1
Matrix density

Class Dimension Density
Naval 59 7.67
66 7.35
72 4.28
87 7.15
162 4.50
LP 27 21.
56 23.
96 18.

173 18.

T.F. Coleman / A chordal preconditioner 273

Values were assigned to the nonzeros in a manner which allowed some (limited)
control over conditioning while maintaining symmetry and positive definiteness.
For the Naval Problems our technique was the following: First we generated a
sparse upper triangular matrix R such that the structure of R'R was contained in
the structure of the given symmetric matrix H. Random values were then assigned
to the off-diagonal nonzeros so that each entry was in the range [—1, 1]. Finally,
the diagonal elements were assigned values uniformly distributed over different
ranges: this range was varied until matrices of different but “reasonable” condition
were generated. (An estimate of the condition number of each matrix is listed in
our reported results.)

The LP data were used to generate symmetric positive definite matrices by forming

H = ADA"

where the structure and value of A was given; the diagonal elements of D were
assigned to be positive random numbers uniformly distributed over different ranges
(varied to yield matrices of different condition).
. Right hand sides were generated randomly in the range [—1, 1].

The first experimental question we address is this: How well does C (produced
by algorithm Find_P) approximate H? Since C is composed of submatrices of H,
a reasonable and convenient measure is

|Clle/ | H]l * 100. (2.1)

These ratios are recorded in Table 2. Note that t =1, t =2 and ¢ = o0 correspond to
diagonal, tree and general chordal preconditioners respectively.

Roughly speaking, the diagonal preconditioner recovers about 45-55% of H; the
tree preconditioner recovers about 65-75% of H ; the general chordal preconditioner
yields 80-95%. Hence in general we expect to observe a significant variation in the
number of required CG iterations as t varies.

We present results on two sets of experiments (Tables 3 and 4) on symmetric
positive definite linear systems. First, we consider a “high accuracy” solution to

Table 2
Chordal weights

Class n t=1 t=2 t=00
Naval 59 48 70 82
66 45 70 94
72 53 97 97
87 49 71 83
162 40 59 77
LP 27 71 83 87
56 81 88 88
96 23 44 99

173 39 49 70

274 T.F. Coleman | A chordal preconditioner

Table 3

High accuracy

Class n # t=0 t=1 t=2 1=
Naval 59 2 33 31 23 19
3 52 45 31 27
6 95 63 40 30
66 2 26 23 17 3
3 55 38 28 3
6 84 72 52 11
72 2 41 41 8 8
3 64 54 6 6
6 93 64 6 6
87 2 51 47 33 27
3 63 58 42 34
4 87 74 55 44
6 124 84 63 49
162 3 113 99 80 59
4 153 141 108 81
5 241 193 145 108
LP 27 3 27 14 11 8
5 32 14 12 7
7 >400 14 12 7
56 6 78 26 17 14
8 >400 29 27 17
96 7 >400 >400 85 26
8 >400 185 122 54
LP 173 6 >400 28 27 27
7 259 41 40 37

Hs = —g. In particular, PCG is terminated when
I Hs +gll.< ¢llgll-

where € =107°. The Table 4 corresponds to low accuracy: ¢ is set to 107" in this
case. The entries in the tables correspond to the number of PCG iterations. The #
column records the exponent of the estimated condition number (i.e. cond(H) = 10%)
obtained by Linpack’s DPOCO (Dongarra et al., 1978).

Comments. 1. In general the number of required iterations decreases as t increases.
The difference between t=0 and t=c0 becomes more marked as the condition

number increases, in general. (1 =0 corresponds to CG without preconditioning (or
PCG with C=1).)

T.F. Coleman | A chordal preconditioner 275

Table 4

Low accuracy

Class n # t=0 t=1 t=2 t=00
Naval 59 2 8 7 6 4
3 22 21 17 9
6 77 56 40 30
66 2 2 2 1 2 ‘
3 3 2 2 1
6 4 2 2 2
72 2 7 2 2
3 23 11 2 2
6 84 59 6 6
87 2 9 7 6 5
3 24 23 17 14
4 62 45 39 27
6 95 80 57 44
162 3 23 24 19 14
4 65 59 44 31
5 170 143 82 61
LP 27 3 18 3 3 2
) 25 4 4 2
7 >400 4 4 2
56 6 64 20 11 9
8 97 22 22 11
96 7 >400 164 111 12
8 >400 117 75 28
173 6 163 25 26 23
7 227 16 16 16

2. For t =0 the number of required iterations often increases dramatically with
condition number; for ¢ > 0 the number of required iterations is considerably more
insensitive to condition number.

3. The separation amongst the cases t =1, t =2 and t = o is distinct in some cases
and insignificant in others. This variation is usually related to the relative weights
of the different preconditioners: see Table 1.

4. Except for 3 cases (n=66, n=72, n=96), the number of iterations for t =0o0
is never significantly less than half that required by the diagonal preconditioner
(t=1). Notice that all three are in the 90% ‘‘weigh” range—the corresponding
diagonal preconditioners “weigh” about 50%.

As mentioned in Section 1.3, it is possible to increase the weight of the precon-
ditioner by relaxing the chordality restriction somewhat. We have experimented
with this idea, using the bordering scheme: the Extra Space Table (Table 5) records
some of the results. The preconditioner then is still block diagonal; however, each

276 T.F. Coleman / A chordal preconditioner

Table 5

Extra space

n # Weight Weight Weight Its Its Its
x=0 x=n/16 x=n/4 x=0 x=n/16 x=n/4

59 6 82 85 88 30 24 18

66 6 94 97 99 11 8 5

72 6 97 98 98 6 4 2

87 6 83 84 86 49 42 26

162 5 77 76 81 108 104 76

chordal block is augmented with a dense block (Section 1.3). We have two sets of
experiments—one with a dense block space of size x =n/4 and one dense block
space of size x=n/16. Table 5 records the results for the high accuracy runs on
the most ill-conditioned Naval Problems.

In Table 5, n is the problem dimension; # is the exponent of the estimated
condition number; the next three columns give “weight”, as defined in (2.1), for
the cases when there is no dense block, a dense block of size n/16, and a dense
block of size n/4, respectively; in the final columns the number of required iterations,
for each of the three cases, is listed.

As predicted, the number of required iterations decreases as x increases.

We conclude this section with results (Tables 6-8) on 3 larger problems from the
Everstine collection: n =758, 918, 1007 with densities 1.04, 0.88, and 0.85 respec-
tively. We did not estimate the condition number of these matrices; however, the
numerical values were generated in the fashion used on the previous (smaller) matrix
structures. Hence we can expect the conditioning of the matrices to vary in a similar
way. The asterisks indicate the relative ordering of the “estimated” condition: e.g.
** is more poorly conditioned than *, etc.

Once again the variation is predictable: the number of PCG iterations decreases
as t increases. In this case differences are quite minor on the low accuracy examples.

In summary, the experiments in this section certainly support the hypothesis that
the number of PCG iterations will decrease as ¢ increases. In some cases the move
from t=1 to t = o0 results in a dramatic decrease; in others, the decrease is modest.
The difference is related to weight difference, condition number, and accuracy
demanded.

Table 6
Chordal weights

n t=1 t=2 t=00
758 39 57 71
918 45 64 78

1005 38 58 69

T.F. Coleman | A chordal preconditioner 277

Table 7

High accuracy

n # t=0 t=1 =2 t=00
758 * 18 18 17 15
ok 26 23 21 16
ek 52 40 37 23
ekkok 286 179 90 75
918 * 19 18 17 15
ok 24 22 19 16
ok 41 30 25 20
kx 307 146 46 38
1006 * 17 17 17 15
ok 25 22 17 15
ok 49 38 33 23
ekt 381 252 116 166
Table 8

Low accuracy

n # t=0 t=1 t=2 t =00
758 * 2 2 2 2
ok 2 2 2 2
ek 4 3 2 2
kR 14 8 8 7
okk ok 1061 586 445 334
918 * 2 2 2 2
ek 3 2 2 2
ok 3 2 3 2
ok 6 4 3 2
1007 * 2 2 1 1
ok 2 2 2 1
ok 3 2 2 1
kot 7 3 2 2

Of course the most important computational question is this: Does the chordal
preconditioner provide a net computational gain over a diagonal preconditioning
scheme. We defer a discussion of this question to Section 5 so that the nonlinear
experiments is Section 4 can also bear on the discussion.

3. Preconditioned conjugate gradient trust region algorithm

In this section we describe the integration of our chordal preconditioner with
Steihaug’s (1983) conjugate gradient trust region algorithm (see also Toint, 1981).

278 T.F. Coleman / A chordal preconditioner

Suppose we are interested in finding a local minimizer of the function f: R" > R’
where f is twice continuously differentiable. Let x be the current point. In general,
a trust region method computes a trial correction, s, to the current point by modelling
f with a quadratic function defined at x, q(s)= g"s+3s" Hs, where g is the gradient
vector evaluated at x and H is the Hessian matrix (at x). The following problem
is then solved (perhaps approximately):

min{q(s): [|s|| < 4}. (3.1)

Steihaug suggests using a weighted norm: ||s| = (s"Cs)"? where C is symmetric
positive definite; problem (3.1) is solved approximately using conjugate gradients.
The method of conjugate gradients is an iterative method in itself: a sequence of
approximately solutions to (3.1) is generated, s,, 55, ..., Sn, With the properties

Isille > lsicalles q(s)<gq(si-y), i=1:m

The index m is determined when either the boundary 4 is crossed or the residual,
Hs; + g is acceptably small.

The method of conjugate gradients is generally reserved only for positive definite
systems; however, the Hessian matrix H(x) need not be positive definite. Neverthe-
less, Steihaug points out that CG can be applied to (3.1) in the following way. CG
is well-defined provided only positive curvature is encountered: i.e. d THd, > 0, where
d; is the direction along which s; is to be corrected. If d] Hd; <0 then d; is a direction
of non-positive curvature; an approximate solution to (3.1), 5,4, = s,, With ||s,,.|| = 4,
is immediately available. For completeness, we reproduce Steihaug’s algorithm to
approximately solve (3.1):

Step 1:
© 50=0, ro=—g
- solve Cry=r,
< dy=1,, i=0.
Step 2:
TN = d’ieri

- If y,=<0 then
compute 7 such that ||s;+ 7di|c = A
s:=s;+ 7d; return
- else
Step 3:
C o= IR Y, S = St ad;
« If ||si+1]| = A4 then
compute 7 such that ||s;+7d;|c =4
s =s;+ 7d, return
- else
Step 4:
© riw = ri—o;Hd,
- If [riallc <elgllc then

T.F. Coleman / A chordal preconditioner 279

§ =8, return
- else
Step 5:
- solve Criy,=r;
©Bi= i Fi /1y Ay = Fiv1t Bid;

- i'=1i+1, go to Step 2

Of course the step s produced above is only a trial step: it may or may not be
accepted depending on the change in the objective function f. The reader is referred
to Powell (1970) (also Steihaug, 1983) for a full description of this acceptance test
and the overall trust region strategy (e.g. 4 will need to be adjusted occasionally).

Step 1 needs to be expanded to include the computation of the preconditioner.
Specifically, the Cholesky factorization of the block diagonal preconditioner will
be attempted in this step: If it is unsuccessful then the offending blocks are replaced
by diagonal matrices.

Step 1:
"= g
- find chordal blocks D= (D,, D,,..., D,) (Find_P)
- fori=1:k
- if D;= L,LT then
Ci, =D,
- else
C;:=diag"(D;)
- end if
- For=Cilrd, db=F
- 50=0,i=0
End of Step 1

Note. The matrix diag*(D;) is the diagonal matrix whose diagonal entries are the
absolute values of the diagonal entries of D,.

The failure of the Cholesky factorization of a block can also allow for the
determination of a direction of negative curvature: we have not employed the use
of such a direction in our implementation but we sketch the computation below—
(this approach is based on the work of Gill, Murray and Wright (1981).

Assume for the moment that H is symmetric positive definite. We can write

Hiv
H=(-=--21
(vT I a)

where H is symmetric positive definite. Cholesky factorization can be implemented
recursively:

- factor H=LL"

280 T.F. Coleman | A chordal preconditioner

. solve Lw=v

cu=(a—w'w)"/?

yielding the Cholesky factor of H:

If H is positive definite but H is indefinite, then the above procedure fails because
a —w'w<0. Nevertheless, in this case we can write

H=LDL"
where D =diag(1,1,...,1, —1). The solution to the system
L'd=e,

yields a direction of negative curvature since d' Hd = —1.

To apply this result in our context, notice that if d; is a direction of negative
curvature for block D; then d; = (0, d;, 0) satisfies the negative curvature condition
d!Hd; <0.1In a similar way define d; for i € J (anindex set). Thend =Y ,_, d; satisfies
d"Hd <0. Hence every indefinite block can contribute to the negative curvature
direction.

4. Experiments on sparse nonlinear minimization problems

We have implemented the preconditioned conjugate gradient/trust region
algorithm of Section 3 and conducted experiments on a number of sparse nonlinear
optimization problems. The purpose of this section is to present and discuss our
results.

The first problem class of test problems is due to Toint (1978). Let S={(i,j)} be
the index set of nonzeros of H. We assume that S is symmetric ((i, j)€ S = (j,i)€ S)
and all diagonal elements belong to S ((i, i) € S, i =1:n). Define

fx)= Y sin(Bixi+B;x;+v;)
(i,j)eS
where B;=i/n, y; =(i+j)/n.

Numerical results for sparsity patterns defined by 2 Naval problems are presented
(n=59, n=162). We have experimented with several other sparsity patterns from
this collection; however, the presented results are representative of the rest.

In the test problem tables (Tables 9 and 10), ¢ indicates the type of preconditioner
(as before), weight reflects the Frobenius norm of the preconditioner divided by
the Frobenius norm of the initial Hessian matrix, (2.1), high-CG is the total number
of PCG iterations required when high accuracy is demanded from each linear system:
i.e.|[Hs+g|.<107"| g|l,. Low-CG gives the total number of PCG iterations required
when each linear system was solved to low accuracy: |Hs+g|,<107"|g|,. The

T.F. Coleman |/ A chordal preconditioner 281

Table 9

Trigonometric test problem

t Weight High-CG Low-CG High-M Low-M

n =59, cond #=10*

0 344 349 35 37
1 60 89 57 36 38
2 76 77 51 36 37
00 82 78 53 36 38

n =162, cond #=10°

0 873 920 50 52
1 57 81 66 52 55
2 66 103 67 44 47
00 88 79 57 43 45

high-M and low-M numbers represent the total number of Major iterations that
were performed in the high and low accuracy situations respectively. The stopping
criterion used was | g(x)|,=<107".

In all the experiments on nonlinear systems we have executed algorithm Find_P
at the beginning of each major iteration (i.e. whenever a new Hessian matrix was
determined). In practice it might be more efficient, overall, to perform this step only
occasionally (when warranted).

Remarks on Table 9. In the runs above we also monitored the presence of negative
curvature. In particular we tabulated the number of major iterations in which
negative curvature was discovered. For n =159 the number of iterations in which
negative curvature was found—for both low and high accuracies—was always in
the interval [30, 32]. For n =162 the number of major iterations in which negative
curvature was found was, in each case, in the interval [37, 48].

Obviously there is a big decrease in total PCG iterations from t=0 to t=1 but
little to distinguish ¢ =1 from t=2 from ¢ =0c0. This similarity in performance for
positive values of ¢ is directly related to the presence of negative curvature. Indeed,
in each problem, negative curvature was found in all but the last few iterations;
negative curvature was always discovered after just a few PCG iterations on each
linear system—an approximate solution on the boundary of the trust region was
then determined. The different preconditioners had little effect until the last few
major iterations.

The ¢ = 0 runs were considerably more expensive than the rest. Once again negative
curvature was frequently discovered but in this case the discovery was made only
after many PCG iterations.

To contrast with this class of problems, the next problem contained only positive
curvature. A nonlinear minimization problem can be obtained by transforming a
sparse LP to a nonlinear form using a penalty/barrier function. Specifically, a

282 T.F. Coleman |/ A chordal preconditioner

problem of the form
min{c"x: Ax=b, x;=0,i=1:n} (LP)
yields the following nonlinear penalty/barrier function:
f(x)=pc"x—u’Y In x;+3|| Ax — b||3.
Hence the gradient g(x) equals
pc—u’D e+ AT(Ax —b)
and the Hessian H(x) equals
w’D2+ATA,

where D = diag(x,, x,, ..., X,). Clearly the Hessian matrix is positive definite for
all strictly positive x and u > 0. We define f(x) =00 if x; <O for any i.

Our purpose here is not to advocate a particular method for solving (LP): rather,
we wish to solve an interesting sparse optimization problem with positive curvature.
Our experiments were based on a fixed value of w: =1 (hence only a very
inaccurate solution to (LP) was determined). In this case we terminated the t=0
runs because of the excessive number of CG-iterations (>2000). The number of
required PCG iterations for the diagonal preconditioning case (t=1) is still quite
high and the tree preconditioner (¢ = 2) does not help much. (Notice that the weights
differ only slightly between ¢t =1 and ¢t =2.) The full chordal preconditioner is able
to substantially reduce the number of required PCG iterations for both the low and
high accuracy approaches.

Table 10
LP test problem

t Weight High-CG Low-CG High-M Low-M

n =51, cond #=10°

0 * * * *

1 30 1516 1640 136 165
2 39 1203 1130 140 140
© 2! 517 475 72 112

We derived the final class of nonlinear problems using the Naval structures. In
particular, define

f(x)=3%c—-bTx+3ix"Hx)?

where H is a matrix used in the Naval problems of Section 2, b is the right-hand-side
used in Section 2, and the constant c is chosen so that the function f(x) is strictly

Table 11

T.F. Coleman | A

Nonlinear naval problems

chordal preconditioner

t Weight High-CG Low-CG High-M Low-M
n =159, cond #=10?

0 * * * *
1 52 65 54 5 10
2 72 45 41 5 9
0 85 33 29 5 9
n =59, cond #=10°

0 * * £ *

1 50 109 167 11 15
2 72 75 114 10 14
0 85 51 221 10 48
n =66, cond #=10"

0 * * * *
1 47 88 91 6 10
2 65 45 65 5 10
0 99 5 7 4 5
n =66, cond # =108

0 * * * *
1 46 593 435 68 64
2 70 505 318 72 70
00 94 251 136 61 64
n =72, cond #=10?

0 * * * *
1 62 25 30 4 9
2 97 7 14 4 8
00 97 7 14 4 8
n =72, cond #=10°

0 * * * *
1 60 69 75 7 11
2 97 7 21 4 9
00 97 7 21 4 9
n =387, cond #=10°

0 * * * *
1 45 93 107 8 13
2 60 80 91 8 13
0 78 58 59 7 11
n =162, cond #=10>

0 * * * *
1 34 83 123 6 11
2 52 89 74 6 11
00 75 57 44 6 10

283

284 T.F. Coleman / A chordal preconditioner

bounded from zero. If we define
g(x)=c—b"x+3x"Hx

then the gradient of f is g(x)=q(x) * (Hx—b) and the Hessian of f is q(x) * H+
g(x)g(x)". Since the Hessian of f at the solution x, is q(x,) * H, we have approxi-
mated the Hessian throughout the computations with g(x) * H. The starting point
is the zero vector in all cases.

Clearly the number of required PCG iterations decreases as t increases. Dramatic
decreases occur in cases 3, 5, and 6 corresponding to weights in the mid to upper
90’s. (In case 4, where weight =94 for t = o0, there is no corresponding jump: this
is due to the very high condition number.) Surprisingly, in the majority of the cases
it is cheaper to solve the subproblems to high accuracy: the total number of major
iterations is sufficiently lower to cause a net win for the high accuracy strategy.
(Note: We did not vary the tolerances for high and low accuracies: It might well
be that different settings would reverse the last comment.)

5. Concluding remarks

We have proposed an automatic preconditioning mechanism for use within a
general large sparse optimization context. The preconditioning matrices are chordal:
i.e. the Cholesky factorization incurs no fill. Hence the Cholesky factor of the
preconditioner can fit within the data structure needed for the sparse Hessian matrix.
Furthermore, the heuristic procedure used to find chordal submatrices can be further
restricted to allow for t-chordality. So, for example, if t =1 then the structure of
the preconditioner is a forest with at most 3n nonzeros (a tridiagonal matrix is a
particular example of a forest).

It is clear from the numerical results presented in Sections 2 and 4 that chordal
preconditioning, as defined by algorithm Find_P, can greatly reduce the number of
CG iterations required. In general as ¢ increases the weight of the preconditioner
increases; in general as the weight of the preconditioner increases the number of
CG iterations decreases. Moreover, our experiments provide several dramatic reduc-
tions. Specifically, if we compare diagonal preconditioning with full chodal precon-
ditioning, we observe an order of magnitude reduction in CG iterations in the
following cases:

Tablel, n=66, #=2,3,6;
n=72, #=3,6;
n=96, #=17,8;

Table 8, n =918, #=x**x,

Table 11, n=66, #=17,8;
n=72, #=2,3.

There are also examples of dramatic reductions as ¢ changes from 2 (forest) to .
For example, consider n =66, # =2, in Table 11.

T.F. Coleman / A chordal preconditioner 285

Unfortunately, we believe that the dramatic examples mentioned above represent
the only cases where the chordal preconditioner pays for itself relative to a diagonal
preconditioner. For example, in many cases the ratio between t=1 and t =00, is
approximately 3:1 (wrt#CG iterations). It is doubtful that this decrease will com-
pensate for the extra expense in the determination of C, the factorization of C, and
the solve with C. We have not done a detailed timing analysis (our experimental
code would require extensive fine-tuning) but rough estimates indicate a cost ratio
(between diagonal and general chordal preconditioners) of at least 1:5. Hence we
can hope for a net decrease in computation time only on the dramatic examples
mentioned above. Notice that in each of the dramatic examples, the weight of the
chordal preconditioner is very high (=94). This fact, along with the observation
that weights in the 80’s produce just modest reductions, suggest that a block
preconditioning scheme (with blocks induced by submatrices of H) will be effective
only when either a very high percentage of the matrix is ‘“‘covered”, or there is a
very efficient method for solving the block diagonal system (e.g. fast parallel
computation).

We conclude with a comment on another potential use of the chordal partition
produced by algorithm Find_P. Briefly, the chordal matrix C can be used to define
a matrix splitting for use within a block Gauss-Seidel setting: it is a very convenient
splitting because of the no-fill property, and because C inherits positive definiteness
of H. Indeed, such ideas can also be used to extend the successive projections
approach to least squares problems suggested by Dennis and Steihaug (1986) (see
also Coleman, 1984, pp. 24, #4). In this approach to large sparse overdetermined
least squares problems Ax=b, let A be partitioned as A=(A,, A,,...,A,) with

x=(x",x? ..., x") partitioned accordingly. Assume that A is m by n. Consider the
iteration
Xo = 0
For k=1:0
Fori=1:t

solve, in the least squares sense,

i—1 n
Axp=b-3Y Ax— ¥ Aixi,. (5.0)
j=1 j=i+1
This iteration is mathematically equivalent to a block Gauss-Seidel process on the
normal equations. Dennis and Steihaug (1986) and Coleman (1984) suggests permut-
ing the columns of A and choosing the partition so that each group A; consists of
structurally independent columns (a,, a;€ A; = a, *a,;=0,r=1:m).Hence ATA,
is diagonal and (5.0) is easily solved using a 2-norm calculation.

The chordal subgraph algorithm (Find_P) allows for a generalization: A can be
partitioned, A=(A,, A,, ..., A,), so that each adjacency graph of A/ A, is chordal.
Hence the QR factorization of A; will yield a matrix R; that fits into the space
required by A A;. This generalization will usually reduce the number of groups in

286 T.F. Coleman |/ A chordal preconditioner

the partition (s < t) and should lead to better convergence behaviour of the successive
projection iteration.

Acknowledgements

We thank Jorge Moré for several useful discussions in the early stages of this
research. Moreover, the mechanism for generating positive definite matrices, with
a given nonzero structure (described in Section 2) is his. We are also grateful to
colleague John Gilbert for many illuminating discussions on chordality.

References

A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms (Addison-
Wesley, Menlo Par, CA, 1974).

T.F. Coleman, Large Sparse Numerical Optimization (Springer-Verlag, Berlin, 1984).

T.F. Coleman and J.J. Moré, “Estimation of sparse Jacobian matrices and graph coloring problems,”
SIAM Journal on Numerical Analysis 20 (1983) 187-209.

T.F. Coleman and J.J. Moré, “Estimation of sparse Hessian matrices and graph coloring problems,”
Mathematical Programming 28 (1984) 243-270.

T.F. Coleman, B. Garbow and J.J. Moré, “Software for estimating sparse Jacobian matrices,” ACM
Transactions on Mathematical Software 10 (1984) 329-347.

T.F. Coleman, B. Garbow and J.J. Moré, “Software for estimating sparse Hessian matrices,” ACM
Transactions on Mathematical Software 11 (1985) 363-378.

T.F. Coleman and Jin-yi Cai, “The cyclic coloring problem and estimation of sparse Hessian matrices,”
SIAM Journal on Algebraic and Discrete Methods 7 (1986) 221-235.

P.M. Dearing, D.R. Shier and D.D. Warner, ‘“Maximal chordal subgraphs,” Technical Report 406,
Clemson University (Clemson, SC, 1983).

J.E. Dennis, Jr. and T. Steihaug, “On the successive projections approach to least-squares problems,”
SIAM Journal on Numerical Analysis 23 (1986) 717-733.

J.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart, LINPACK Users Guide (SIAM Publications,
Philadelphia, 1978).

G.C. Everstine, “A comparison of three resequencing algorithms for the reduction of matrix profile and
wave font,” International Journal on Numerical Methods in Engineering 14 (1979) 837-853.

A.J. George and J.W. Liu, Computer Solution of Large Sparse Positive Definite Systems (Prentice-Hall,
Englewood Cliffs, 1981).

P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, New York, 1981).

G.H. Golub and C.F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore,
MD, 1983).

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).

1. Gustafsson, ‘A class of first-order factorization methods,” BIT 18 (1980) 142-156.

T.A. Manteuffel, “Anincomplete factorization technique for positive definite linear systems,” Mathematics
of Computation 34 (1980) 473-497.

N. Munksgaard, “Solving sparse symmetric sets of linear equations by preconditioned conjugate
gradients,” ACM Transactions on Mathematical Software 6 (1980) 206-219.

M.J.D. Powell, “A new algorithm for unconstrained optimization,” in: J.B. Rosen, O.L. Mangasarian
and K. Ritter, eds, Nonlinear Programming (Academic Press, New York, 1970) pp. 31-65.

M.J.D. Powell and Ph.L. Toint, ““On the estimation of sparse Hessian matrices,” SIAM Journal on
Numerical Analysis 16 (1979) 1060-1074.

D.J. Rose, R.E. Tarjan and G.S. Leuker, ““Algorithmic aspects of vertex elimination on graphs,” SIAM
Journal on Computing S (1976) 266-283.

T.F. Coleman / A chordal preconditioner 287

T. Steihaug, “The conjugate gradient method and trust regions in large scale optimization,” SIAM Journal
on Numerical Analysis 20 (1983) 626-637.

M.N. Thapa, “‘Optimization of unconstrained functions with sparse Hessian matrices—Newton-type
methods,” Mathematical Programming 29 (1984) 156-186.

Ph.L. Toint, “Some numerical results using a sparse matrix updating formula in unconstrained optimiza-
tion,” Mathematics of Computation 32 (1978) 839-851.

Ph.L. Toint, “Towards an efficient sparsity exploiting Newton method for minimization,” in: 1.S. Duff,
ed., Sparse Matrices and their Uses (Academic Press, New York, 1981) pp. 57-87.

